Sharpness of Some Properties of Wiener Amalgam and Modulation Spaces

نویسنده

  • ELENA CORDERO
چکیده

We prove sharp estimates for the dilation operator f(x) 7−→ f(λx), when acting on Wiener amalgam spaces W (L, L). Scaling arguments are also used to prove the sharpness of the known convolution and pointwise relations for modulation spaces M, as well as the optimality of an estimate for the Schrödinger propagator on modulation spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes of Variables in Modulation and Wiener Amalgam Spaces

In this paper various properties of global and local changes of variables as well as properties of canonical transforms are investigated on modulation and Wiener amalgam spaces. We establish several relations among localisations of modulation and Wiener amalgam spaces and, as a consequence, we obtain several versions of local and global Beurling–Helson type theorems. We also establish a number ...

متن کامل

Remarks on Fourier Multipliers and Applications to the Wave Equation

Exploiting continuity properties of Fourier multipliers on modulation spaces and Wiener amalgam spaces, we study the Cauchy problem for the NLW equation. Local wellposedness for rough data in modulation spaces and Wiener amalgam spaces is shown. The results formulated in the framework of modulation spaces refine those in [3]. The same arguments may apply to obtain local wellposedness for the NL...

متن کامل

Sharp Continuity Results for the Short-time Fourier Transform and for Localization Operators

We completely characterize the boundedness on Wiener amalgam spaces of the short-time Fourier transform (STFT), and on both L and Wiener amalgam spaces of a special class of pseudodifferential operators, called localization operators. Precisely, sufficient conditions for the STFT to be bounded on the Wiener amalgam spaces W (L, L) are given and their sharpness is shown. Localization operators a...

متن کامل

Some New Strichartz Estimates for the Schrödinger Equation

We deal with fixed-time and Strichartz estimates for the Schrödinger propagator as an operator on Wiener amalgam spaces. We discuss the sharpness of the known estimates and we provide some new estimates which generalize the classical ones. As an application, we present a result on the wellposedness of the linear Schrödinger equation with a rough time dependent potential.

متن کامل

Pseudodifferential Operators on L, Wiener Amalgam and Modulation Spaces

We give a complete characterization of the continuity of pseudodifferential operators with symbols in modulation spaces M, acting on a given Lebesgue space L. Namely, we find the full range of triples (p, q, r), for which such a boundedness occurs. More generally, we completely characterize the same problem for operators acting on Wiener amalgam space W (L, L) and even on modulation spaces M . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008